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1  |  INTRODUC TION

Modern biological research has made substantial advances in pre-
dicting the ecological impacts of global change, with a central focus 
on understanding biosphere- climate feedbacks. These insights 
are typically derived from the environmental responses of either 

ocean phytoplankton, shifts in vegetation function and patterns, 
and to a lesser extent, alterations in soil microbial biomass and ac-
tivity (Crowther et al., 2019; Dutkiewicz et al., 2009; McDowell 
et al., 2020). Yet, a critical knowledge gap remains around the in-
fluence of evolution, particularly local environmental adaptation, 
on contemporary ecosystem processes (Abs et al., 2023; Urban 
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Abstract
Although substantial advances in predicting the ecological impacts of global change 
have been made, predictions of the evolutionary impacts have lagged behind. In 
soil ecosystems, microbes act as the primary energetic drivers of carbon cycling; 
however, microbes are also capable of evolving on timescales comparable to rates 
of global change. Given the importance of soil ecosystems in global carbon cycling, 
we assess the potential impact of microbial evolution on carbon- climate feedbacks 
in this system. We begin by reviewing the current state of knowledge concerning 
microbial evolution in response to global change and its specific effect on soil car-
bon dynamics. Through this integration, we synthesize a roadmap detailing how to 
integrate microbial evolution into ecosystem biogeochemical models. Specifically, 
we highlight the importance of microscale mechanistic soil carbon models, includ-
ing choosing an appropriate evolutionary model (e.g., adaptive dynamics, quantitative 
genetics), validating model predictions with ‘omics’ and experimental data, scaling mi-
crobial adaptations to ecosystem level processes, and validating with ecosystem- scale 
measurements. The proposed steps will require significant investment of scientific 
resources	and	might	require	10–20 years	to	be	fully	implemented.	However,	through	
the application of multi- scale integrated approaches, we will advance the integration 
of microbial evolution into predictive understanding of ecosystems, providing clarity 
on its role and impact within the broader context of environmental change.
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et al., 2020). Microbes are especially pertinent to this discourse 
because of their high potential for rapid evolutionary responses 
and their impact on regulating global biogeochemical processes 
(Falkowski et al., 2008). Here we argue that microbial evolution is 
mostly ignored in current global biogeochemical cycle research; 
yet it can potentially strongly affect carbon (C) cycling, especially 
in response to climate change, and as such should be represented 
in future models (Figure 1). We further assert that a thorough ex-
ploration of microbial evolution's impact on biogeochemistry is not 
only scientifically interesting but also vital for constraining model 
parameters and constructing robust models rooted in empirical data.

We illustrate this point by focusing on the influence of microbial 
evolution on the soil- climate feedback, as soils harbor the largest 
reservoir of terrestrial organic C. Furthermore, the dynamics of soil 
organic C (SOC) can either exacerbate climate change through in-
creased respiration of organic matter, thereby releasing carbon di-
oxide (CO2) to the atmosphere, or mitigate climate change through 
increased C storage in microbial biomass or mineral- associated soil 
organic matter (Kallenbach et al., 2016; Woolf & Lehmann, 2019). 
Soil microbes also interact with plants through nutrient exchange 
and competition, which affect both plant C cycling and soil C inputs 
(Stuart Chapin et al., 2009). Thus, changes in microbial functional 
traits regulating these processes, particularly those subject to high 
selective pressures, could alter soil CO2 emissions and, in turn, affect 
climate.

In this perspective article, we review the current state of knowl-
edge about microbial adaptation to climate change and soil C biogeo-
chemistry, and propose future directions regarding how to better 
integrate the impact of microbial evolution on soil carbon cycling in 
predictive models. First, we build a conceptual framework for defin-
ing microbial evolution in the context of soil carbon cycling. Second, 

we develop our main hypothesis that microbial adaptation can 
strongly change the response of soil CO2 fluxes to climate change 
by synthesizing empirical evidence on how microbial evolution af-
fects the soil C response to climate change. Finally, we provide a 
roadmap for how to integrate microbial evolution into ecosystem 
biogeochemical models.

2  |  CONCEPTUAL FR AME WORK TO 
INVESTIGATE MICROBIAL E VOLUTION

2.1  |  The traditional ecology–evolution divide is 
not appropriate for microbes

Microbial responses to environmental change are unique because 
ecological and evolutionary processes often occur simultaneously 
along a spatiotemporal continuum (Cohan, 2006; Loreau et al., 2023). 
For example, temporal turnover of soil fungi in ~1 week	is	equivalent	
to	spatial	 turnover	of	taxa	across	100 km	(Averill	et	al.,	2019). The 
distinction between evolution, defined as changes in allele frequen-
cies within a population, and ecology, defined as changes in taxo-
nomic abundances within a community, might be less relevant for 
microbes compared to larger organisms (Fraser et al., 2009; Rosselló- 
Mora & Amann, 2001). This reasoning centers around the challenges 
in delineating microbial taxonomic units that limit our capacity to 
distinguish between ecological and evolutionary processes. The un-
certainty of what constitutes a microbial taxon and, by extension, a 
population (the fundamental unit of evolution), complicates studies 
of inter-  and intraspecific interactions. Microbes do not abide by the 
traditional biological species concept: they reproduce asexually and 
exchange genetic material across disparate taxonomic lineages via 

F I G U R E  1 Impact	of	microbial	eco-	evolutionary	dynamics	with	consequences	for	ecosystem	function.	Communities	across	sites	are	
composed of different operational taxonomic units (OTUs), a proxy for microbial species (here four OTUs are represented for simplicity). 
Yet, OTUs mask millions of years of evolutionary divergence, precluding insights into the evolutionary dynamics of microbial populations or 
other adaptive responses. When a community responds to environmental change, a continuum of ecological (i.e., interspecies variation) and 
evolutionary responses (i.e., intraspecies variation) shift taxonomic (species) and genetic (alleles) frequencies within the community. Shifts 
in functional traits (e.g., carbon degradation and temperature response) across taxa or within populations can be assessed by the degree of 
phylogenetic conservation to predict the overall functional response of the community.
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horizontal gene transfer (HGT), which further convolutes evolution-
ary signals (Doolittle, 1999).

Ecological and evolutionary feedbacks in microbial systems likely 
operate on similar timescales. Microbial communities (microbiomes) 
are capable of responding to environmental change within a span 
of weeks, and on similar time scales, keystone niche constructing 
taxa can significantly reshape community functions such as organic 
matter recycling and creation of soil structure. Additional ecologi-
cal processes such as succession and dispersal, are rapid and wide-
spread in microbiomes with the potential to alter evolutionary and 
successional trajectories through the introduction of new alleles 
and/or introducing novel intra-  and interspecific interactions (Bassar 
et al., 2021; Yoshida et al., 2003). As such, recent frameworks sug-
gest shifting the focus from disentangling ecological and evolu-
tionary processes to quantifying the diverse mechanisms by which 
compositional shifts occur across timescales and how they affect 
community function (Martiny et al., 2023) (Figure 2).

2.2  |  Alternative framework: Historical versus 
contemporary processes

While there may be no clear divide between ecological and evolu-
tionary processes in microbiomes, it is instructive to distinguish be-
tween historical and contemporary evolution. Historical evolution 
encapsulates the cumulative evolutionary pressures spanning tens to 
hundreds of millions of years, a process that governs trait variation 
among taxa that contribute to differential geographic distributions 
(i.e., phylogeography). In contrast, contemporary evolution denotes 
the ongoing adaptive responses within populations to environmental 
change, which takes place on the timescales of months to decades.

Different evolutionary processes operate across a wide range of 
timescales; however, mutations remain the source of new genetic vari-
ation. In microbes, it is estimated that there are ~1 million	mutations	
per	day	in	1 g	of	soil	(Wielgoss	et	al.,	2013). Most of these random mu-
tations will either be deleterious, synonymous, or emerge in noncoding 
regions, and only a small fraction proves advantageous under specific 
environmental conditions. Even in these rare instances, advantageous 
mutations must proliferate from a single cell to other individuals 
within a population to alter evolutionary dynamics. This process can 
occur through gene- specific (Chase et al., 2019; Shapiro et al., 2012) 
or genome- specific sweeps (Bendall et al., 2016) within a popula-
tion that ultimately contribute to ecological differentiation between 

populations (Arevalo et al., 2019). Whether this genetic exchange oc-
curs among closely- related strains (via homologous recombination) or 
HGT among disparate lineages, the rapid acquisition of advantageous 
genes or entire genomic segments provides a genetic reservoir that 
is adaptive to environmental fluxes (Polz et al., 2013). Even so, trans-
ferred regions must provide a selective advantage to proliferate from 
low to high frequency within a population and, in the case of HGT, 
overcome costs of assimilating foreign genes (Baltrus, 2013; Gophna 
et al., 2004). Historical evolution is therefore expected to be mostly 
driven by long- term processes such as trait selection, while contempo-
rary evolution might be mainly driven by faster processes such as HGT 
and shifts in population and allele frequencies.

2.3  |  Historical evolution is needed to predict 
contemporary evolution

Historical and contemporary evolution are intertwined as histori-
cal environmental conditions constrain the potential for current and 
future changes. To predict how microbial evolutionary dynamics af-
fect C cycling (i.e. contemporary evolution on a time scale of decades 
to centuries), we must concurrently consider the historical selective 
pressures that contribute to extant genetic diversity. For instance, 
historical evolutionary divergence governs contemporary patterns 
of functional diversity and biogeography, including at the population 
level, and constrains the potential for changes in allele frequencies in 
response to contemporary or future environmental change (Averill 
et al., 2016; Lehmann et al., 2020; Strickland et al., 2015). This ef-
fect of historical evolution on adaptive responses (at the community 
or population level), termed “legacy effect” is most evident in trans-
plant studies, where microbiomes from one historical environment are 
transplanted into a new environment (Chase et al., 2021; Glassman 
et al., 2018). In these studies, communities originating from historically 
distinct climates degraded leaf litter differentially when transplanted 
into a common climate. However, legacy effects can vary across sys-
tems or be context- dependent; for example, historical evolutionary 
patterns may either impede (Brockhurst et al., 2007) or, conversely, 
facilitate adaptation (Blazanin & Turner, 2021) to new conditions. To 
predict the direction and intensity of historical evolution's impact on 
contemporary evolution in a specific location, the next steps could in-
volve focusing on particular legacy effects and testing them through 
transplant or common garden experiments, or identifying patterns in 
data that indicate the legacy effects of a particular system.

F I G U R E  2 Timescales	of	microbial	
response processes and C cycling. 
Environmental fluctuations and soil–plant 
feedbacks that drive microbial responses 
occur at all temporal scales along this 
gradient. Source: Adapted from Abramoff 
et al. (2018). HGT, horizontal gene 
transfer.
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3  |  R ATIONALE FOR INTEGR ATING 
MICROBIAL E VOLUTION INTO 
BIOGEOCHEMIC AL MODEL S

3.1  |  Evidence for rapid microbial evolution under 
laboratory conditions

The impact of microbial evolution on short- term C cycling has 
been empirically observed with lab- based evolution experiments. 
In these experiments, microbes are exposed to a strong selective 
pressure (e.g., temperature or C substrate) while controlling other 
external factors. Famously, Travisano and Lenski (1996) demon-
strated that microbial C metabolism evolved in response to differ-
ential substrate availability (glucose and citrate) insomuch that some 
evolved Escherichia coli populations escaped historical evolution-
ary constraints via de novo mutations to use citrate, a novel sub-
strate for this taxon. Even in eukaryotic microbes, Romero- Olivares 
et al. (2015) showed that fungal strains adapted to variable tempera-
tures exhibited higher fitness when compared to the ancestor on 
time	scales	of	6 months.	Therefore,	evolution	might	quickly	alter	or	
generate novel response traits under new environmental conditions, 
such as expected with climatic changes.

3.2  |  Integration of ecological interactions

Although experimental evolution studies are useful, they can be dif-
ficult to extrapolate to field settings (Chen et al., 2023). For one, 
these experiments are typically run under idealized conditions and 
eliminate confounding, yet important, ecological interactions that 
would otherwise occur in natural communities. For example, strains 
are often evolved in monocultures under a single environmental 
stressor (e.g., temperature) while maintaining nutrient- rich media, 
thereby eliminating competition and other resource limitations. 
Omitting these interactions could have evolutionary consequences; 
for instance, Rodríguez- Verdugo and Ackermann (2021) demon-
strated by evolving a two species community, in which the presence 
of another species modified evolutionary trajectories, ultimately 
resulting in changes to the biodegrading function of the microbial 
system (Rodríguez- Verdugo, 2021).

Likewise, long- term interactions with other organism types, such 
as plants, in field settings could significantly influence microbial 
evolutionary trajectories. For instance, laboratory studies indicate 
that microbial carbon use efficiency (CUE) decreases with warming 
(Wang et al., 2021). However, field studies demonstrate the oppo-
site relationship (Ye et al., 2019), and the precise role of microbial 
evolution in this context remains elusive. Additionally, experimental 
evolution studies typically span only a few months to a maximum of 
a couple of years, whereas longer- term field experiments revealed 
microbial responses continue to vary on a decadal scale. For exam-
ple, in a global change warming experiment, forest soils undergoing 
increased temperature (+5°C) alternately exhibited higher and lower 

respiration rates than control plots, again with a limited understand-
ing of the role of microbial evolution (Melillo et al., 2017). Finally, 
laboratory experiments have cultures that are often grown in shak-
ing flasks, maximizing local dispersal for individuals in the population 
thereby increasing the opportunity for genetic exchange and intra-
specific competition. Especially when considering the high spatial 
heterogeneity in soils, extrapolating evolutionary dynamics and the 
rates at which they occur from lab- based experiments might not re-
flect natural conditions.

To better represent the diversity of microbial communities 
and account for ecological interactions, some laboratory studies 
have recently employed synthetic communities (Li et al., 2022). 
However, these lab- based assessments likely minimize or com-
pletely remove dynamic environmental conditions, such as tem-
perature and moisture fluctuations corresponding to diel cycles, 
seasonal climatic variation, and spatial heterogeneity in soils. 
In order to account for environmental heterogeneity, Chase 
et al. (2021) conducted a field experiment in which they assessed 
adaptive responses to environmental change by monitoring both 
a single soil isolate alongside entire soil communities that were 
reciprocally transplanted across an elevation gradient. By track-
ing mutational responses in the isolate along with compositional 
shifts within the community, the combination of ecological and 
evolutionary responses to new climates resulted in changes in C 
decomposition of organic matter (Figure 3). Because these eco- 
evolutionary processes occurred on relatively fast timescales 
(within	18 months),	we	must	reconsider	how	we	model	C	cycling	
traits in biogeochemical models.

4  |  ROADMAP TO INTEGR ATE MICROBIAL 
E VOLUTION IN BIOGEOCHEMIC AL MODEL S

There is a history of including at least some aspects of microbial 
ecology in soil modeling (e.g., Allison, 2012; Wieder et al., 2014); 
however, there is a pressing need for greater focus on evolution-
ary models that complement ecological models. Consequently, this 
discussion will emphasize evolution (though less integrated), yet the 
outlined approaches actually model eco- evolution. To integrate mi-
crobial evolutionary processes in the context of ecosystem or global 
C cycling, we suggest a multi- scale modeling approach. At the micro-
scale, mechanistic models identify environmental parameters that 
influence metabolic trade- offs and other evolutionary pressures 
on the genes and traits mediating C cycling (e.g., glycoside hydro-
lase [GH] enzymes, as shown in Figure 3). At the ecosystem and 
global scales, biogeochemical models must incorporate microbial- 
vegetation- climate feedbacks to predict soil C stocks. This approach 
has already been successfully applied in vegetation models (Williams 
et al., 1997), but not yet for microbial systems. Here we propose a 
roadmap for such an approach to investigate the effect on C cycling 
of microbial evolution in response to climate change, bridging the 
gap between micro-  and global scales.
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4.1  |  Modeling evolution in mechanistic microscale 
soil models

Along with obtaining long- term microbiome data from natural com-
munities, mathematical and numerical approaches can be employed 
to predict evolutionary responses. These predictions serve to in-
form empirical hypotheses on evolutionary rates and impacts on C 
cycling (Lässig et al., 2017). This section reviews existing modeling 
approaches, most of which have not yet been applied to microbial bi-
ogeochemical models. These approaches can either be used directly 
to predict community- level trait responses or in a two- step ap-
proach that predicts population- level evolutionary responses, which 
are then integrated into a community model to predict community- 
level trait responses.

4.1.1  |  Optimization	of	metabolic	processes

One approach is to represent evolutionary processes implicitly by 
assuming microbial fitness will be maximized via optimization of mi-
crobial metabolic processes. The simplest models based on this idea 
assume evolution of a representative microbe–that is, they neglect 
interspecific variability in the community (Allison, 2014). With this 
assumption, the cumulative evolutionary dynamics results in a com-
munity of microbes all similarly adapted to specific environmental 
conditions, insomuch that different taxa can be treated mathemati-
cally neutral as a homogeneous population. This assumption leads 
to rapid predictions of microbial trait distributions and how these 
traits affect rates of C cycling. However, in these minimalist models, 
microbial diversity and the ecological and evolutionary responses by 
specific microbial taxa, such as the potential for diversification and 

adaptation, are absent altogether. Therefore, this method is particu-
larly applicable for modeling microbial communities with very simple 
ecological interactions.

The level of mechanistic detail varies in these models, from those 
optimizing metabolic networks (Feist & Palsson, 2010) to those fo-
cusing on emergent traits at the community level. For example, CUE 
(C allocated to growth as a fraction of substrate uptake) could be 
considered as an adaptive emergent trait that is under selection 
to maximize growth rates given some level of nutrient availability 
(Allison, 2014). Under limited nutrient availability, high CUE is as-
sumed to increase nutrient demand and allocation for growth, fur-
ther exacerbating nutrient limitations in the community. Thus, to 
maximize growth, microbes need to upregulate CUE with increasing 
nutrient content of organic substrates or inorganic nutrient avail-
ability–a pattern predicted by a simple mathematical model that is 
largely consistent with empirical observations (Manzoni et al., 2017).

Along the same lines, extracellular enzyme production can be 
optimized to acquire or degrade polymeric carbohydrates to max-
imize growth rate. Optimal enzyme production is modeled as a 
balance between the energetic cost of enzyme production and the 
gains from acquiring carbon substrate for growth and other meta-
bolic products. In this way, a simple growth versus yield trade- off 
model predicts for and scales between enzyme production rate or 
CUE and SOC (Abs et al., 2020; Calabrese et al., 2022).

Temporal aspects of resource acquisition can also be predicted 
from the simple assumption that resource investment maximizes 
cumulative growth throughout the decomposition processes (as op-
posed to maximizing growth at any time point or at steady state) 
(Manzoni et al., 2023). Maximum growth is achieved when resource 
acquisition is upregulated with increasing substrate availability, such 
that the highest resource acquisition costs and the highest returns 

F I G U R E  3 Population	dynamics	contribute	to	ecosystem	functioning.	Curtobacterium genomes from soil (proxy for individuals) within 
a population recombine population- specific regions (proxy for gene flow) related to carbon utilization. These evolutionary processes 
contribute to differences in carbon utilization enzymes (e.g., glycoside hydrolases [GH] and carbohydrate binding modules [CBM]) between 
populations (Pop) that are maintained across geographic locations. Upon conducting a reciprocal transplant experiment across a climate 
gradient, each geographic site selected for traits within Curtobacterium; for example, colder, wetter sites selected for Curtobacterium 
species with increased degradation of cellulose and xylan (data from Chase et al., 2021). At the completion of the transplant experiment, 
eco- evolutionary processes manifested as differences in total decomposition at the community level (data from Glassman et al., 2018). Sites 
along the climate gradient differ in temperature and precipitation ranging from desert (D, red), scrubland (Sc, yellow), grassland (G, green), 
pine oak (P, blue), and subalpine (S, purple) habitats. In the right panel, decomposition rates by microbes historically adapted to Sc and G 
conditions are compared along the climate gradient for simplicity.
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occur early during decomposition, whereas costs are minimized in 
the later phases when returns are decreasing. A similar approach 
can be adopted to study microbial resource acquisition strategies 
when decomposing chemically heterogeneous substrates in which 
different compounds interact. For example, microbial growth can be 
maximized by starting lignin decomposition earlier in lignin- rich litter 
types, to allow access to hydrolysable C, despite the higher costs 
of production and maintenance of oxidative enzymes (Chakrawal 
et al., 2024).

4.1.2  |  Quantitative	genetics

A second approach to modeling evolution is quantitative genetics 
(QG), which predicts shifts in allele frequencies (Henry et al., 2021). 
Despite its potential, this method has not been used to study the in-
fluence of microbial evolution on soil C because QG models typically 
exclude ecological feedback. In these models, ecological impacts 
are often reduced solely to population density (i.e., frequency- 
dependent) without consideration for species or environmental inter-
actions (Lion, 2018). Despite this limitation, there has been growing 
interest in this method over the past half- century, particularly in the 
realms of frequency- dependent selection and rapid evolutionary re-
sponses. These explorations in other systems include predator–prey 
models, some of which incorporate microbial components (e.g., host- 
phage dynamics) (Abrams, 2001; Abrams et al., 1993; Day, 2005; 
Iwasa et al., 1991; Lion, 2018; Lion et al., 2023; Slatkin, 1980). The 
lack of QG models in microbial ecology might be more of a discipli-
nary divide rather than a technical challenge. Given the adaptability 
of these tools [e.g., explicit resource dynamics (Lion, 2018)], the inte-
gration of QG with microbial ecology poses a promising opportunity 
to quantify the relationships among microbial evolution, functional 
traits, and ecosystem processes.

4.1.3  |  Adaptive	dynamics

A third approach, known as adaptive dynamics, uses a mathemati-
cal framework based on eco- evolutionary game theory. This ap-
proach assumes that population and resource dynamics adaptively 
impact fitness at arbitrary time intervals, resulting in incremental 
eco- evolutionary changes (Geritz et al., 1998; Kisdi & Geritz, 2010). 
By incorporating competition for resources (e.g., carbon and nu-
trients; space) between evolved and ancestral strains, this method 
captures some of the complex dynamics of ecological and evolu-
tionary processes occurring within microbial communities. For in-
stance, Abs et al. (2022) applied adaptive dynamics to predict the 
eco- evolutionary dynamics of microbial communities in response to 
global warming, specifically focusing on allocation to enzyme pro-
duction as a trait (Figure 4). Their findings revealed that warming 
reduces the likelihood of cheating for soluble resources, leading to 
a higher investment in enzyme production. Consequently, this shift 
resulted in a nearly twofold increase in global soil C loss by 2100 
due to microbial eco- evolution. It is important to note that adaptive 
dynamics is most suitable for modeling the evolution of populations 
through mutations, assuming small trait variance, asexual reproduc-
tion, and low variation rates.

4.1.4  |  Partial	differential	equations	with	explicit	
mutation process

The fourth approach explicitly models the mutation process. The 
advantage of this method is that it incorporates eco- evolutionary 
feedbacks without assuming that evolution occurs at a significantly 
slower rate than ecological processes. These models are based on 
partial differential equations (PDEs) describing mutation as a diffu-
sion process in the trait space (Bouin et al., 2012; Leman et al., 2014). 

F I G U R E  4 Effect	of	microbial	adaptation	modeled	with	adaptive	dynamics	on	soil	C	stocks	(Abs	et	al.,	2022). (a) The effect of adaptation 
to global warming by 2100 is heterogeneous in space, with the strongest effect in cold regions. (b) Change in soil C stocks as a function of 
temperature, with (solid line) or without (dashed line) microbial adaptation, in three locations that differ by their initial temperature (Amazon 
rainforest, Marseilles in France, and Abisko in Sweden). Source: Reproduced from Abs et al. (2022).
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    |  7 of 12ABS et al.

While mathematicians have long been using these models, their 
adoption by ecologists has been limited. One explanation might be 
that these models do not provide analytical solutions, and are there-
fore hard to interpret biologically. One proposed resolution to this 
issue involves reframing the model as a set of moment equations. In 
doing so, the model's focus shifts from describing the dynamics of 
the whole trait distribution to tracking the mean and the variance 
of that distribution (Bolker & Pacala, 1997; Turelli & Barton, 1990). 
However, this approach demands that higher order moments are 
small enough to be ignored—referred to as “moment closure ap-
proximations” (Grenfell et al., 1995). An alternative strategy for miti-
gating the shortcomings associated with PDEs involves employing 
Hamilton–Jacobi equations. With Hamilton–Jacobi equations, like in 
QG, the trait distribution must be denser around the mean, but mu-
tations do not have to be rare like in adaptive dynamics. However, 
these equations share some of the limitations of adaptive dynam-
ics, albeit to a lesser extent, including a requirement that mutations 
occur at a slower rate than ecological processes (Jing et al., 2017). To 
identify the optimal analytical method, it is crucial to determine how 
to represent ecological processes relative to evolutionary ones, and 
vice versa. Shen and Clairambault (2020) have offered an excellent 
review of various models, detailing the insights that each model can 
deliver.

4.1.5  |  Numerical	individual	based	models

In the last approach, numerical models trace the behavior of individ-
ual microbes. Despite their heightened realism, these models come 
at the expense of increased complexity, rendering them analytically 
intractable (Levin, 1992). Nonetheless, this approach can serve as 
an efficient exploratory tool. For instance, Folse and Allison (2012), 
proposed an implementation of evolutionary dynamics that incor-
porated the effects of spatial heterogeneity on microbial taxa and 
substrate diversity. This model revealed patterns in microbial spa-
tial distributions; for example, cooperation among the same types 
of microbes resulted in aggregation, whereas cooperation between 
different types led to filamentous patterns. This approach provides 
insights for ecological and ecosystem- level interpretations consid-
ering higher diversity correlated with slower substrate decay rates 
due to the synergistic interactions resulting in individuals producing 
fewer enzymes. Hence, despite their complexity, numerical models 
have effectively uncovered phenomena in environmental and evolu-
tionary biology that govern microbiome functioning.

Given observed differences in lab and field empirical data, there 
exists a parallel argument for integrating environmental heteroge-
neity into modeling approaches. Theoretical and modeling studies 
have demonstrated that spatial heterogeneity can sustain the evo-
lutionary production of public goods, such as extracellular degrad-
ing enzymes (Abs et al., 2020; Allison, 2005), and promote microbial 
diversity (Stump et al., 2018). Soil exhibits strong spatial structure 
(Young & Crawford, 2004), and recent research has indicated its in-
fluence on soil C dynamics at both the pore scale (Kaiser et al., 2015; 

Wang & Allison, 2019) and global scale (Abs et al., 2022; Tang & 
Riley, 2014). The need to account for spatial heterogeneity, a fea-
ture which is ignored in ecosystem and global models, is a challenge 
addressed in Section 4.3. Overall, we note that there are still few 
studies investigating the emergent properties of spatial heteroge-
neity on evolutionary dynamics of soil microbes with mechanistic 
microscale soil models. Numerical models have the limitation of not 
providing exact analytical solutions, which can make interpretation 
and deeper understanding of underlying principles challenging. 
Nevertheless, spatially explicit and analytical models may converge 
as analytical spatially explicit models are developed (Chakrawal 
et al., 2020; Leman et al., 2014).

4.2  |  Validation with omics data

We cannot easily predict or validate evolutionary trajectories using 
plot-  or field- scale observations of fluxes and C stocks because they 
aggregate over the functioning of diverse microbial communities 
(e.g., Figure 3). However, a skyrocketing number of omics datasets 
provide opportunities for fine scale resolution of microbial ecologi-
cal and evolutionary patterns at sites around the globe (Allen White 
et al., 2017). Omics data refer to large- scale datasets generated from 
high- throughput technologies that cover multiple layers of biological 
information, such as gene sequences, transcripts (gene expression), 
proteomes, and metabolomes. The most robust outcomes will likely 
emerge from integrating these multiple layers through multi- omics 
strategies to understand the relationship between genetic and re-
alized potential of a microbiome (Hultman et al., 2015; Jansson & 
Baker, 2016). A key need is to derive microbial parameters from 
these datasets, while ground truthing with genomic data, though the 
computational approaches remain a work in progress.

Several emerging quantitative approaches have attempted to 
translate genomic data into microbial life history strategies. The 
Phylogenetic Investigation of Communities by Reconstruction of 
Unobserved States (PICRUSt) software is often employed to ex-
trapolate functional traits from amplicon data based on clustering 
of the 16S rRNA gene into operational taxonomic units (https:// 
picru st. github. io/ picru st/ ). The DEBmicrotrait model predicts func-
tional traits from sequenced genomes or metagenome- assembled 
genomes (Karaoz & Brodie, 2022). Finally, the data- driven COMETS 
model predicts metabolic pathways from genomic data, informa-
tion that can be used to generate hypotheses about the impact of 
individual microbes on ecosystem function (Dukovski et al., 2021). 
However, most environmental microbiomes are largely understud-
ied and lack representative isolates to determine phenotypic traits, 
especially in soil systems (Choi et al., 2017).

Given that environmental microbiomes are highly diverse and 
largely lack cultured representatives to inform metabolic models, 
computational tools rely on the conservation of traits and metabolic 
pathways. As such, determining how to interpret microbiome func-
tional data is dependent on the trait of interest, as traits are con-
served at varying phylogenetic levels (Martiny et al., 2015). Highly 
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conserved traits like pH tolerance can be adequately captured by 
surveying the entire community at broad taxonomic depths. Simpler 
traits, such as those related to C utilization as represented by the 
composition of GH genes, are less conserved and can vary among 
closely- related microbial lineages, especially within OTU designa-
tions based on 16S rRNA similarity (Chase et al., 2017, 2018; Scales 
et al., 2022). The statistical models we present here might work at 
different taxonomic levels to generate global maps of trait values. 
If we assume a space- for- time substitution and no legacy effects, 
these maps could then be used to validate the theoretical predic-
tions of trait adaptation to global change obtained with the methods 
presented in Section 4.1.

4.3  |  Scaling up from microscale to global scale

Eco- evolutionary models, which operate at the microscale, provide a 
foundation to extrapolate to larger scales that encompass soil cores, 
plots, and ecosystems. Upscaling from micrometers to 1000s of km 
is very challenging and has not been achieved yet, to the best of our 
knowledge. However, accomplishing this upscaling would be a game 
changer, as it would enable the study of evolutionary effects on 

global C cycling. The integration of microbial evolution is currently 
a focal point in the advancement of soil biogeochemical models. 
(Crowther et al., 2019) anticipate that the forthcoming generation 
of models will account for continuous variation in traits–similar to 
ongoing efforts in vegetation models (Harrison et al., 2021; Kattge 
& Knorr, 2007; Lombardozzi et al., 2015). Martiny et al. (2023) high-
lighted the impracticality of assuming invariant microbial response 
functions, given their dependency on microbial communities and the 
specific processes—and their rates—at work. Further, Cruz- Paredes 
et al. (2023) discovered that these response functions depend not 
only on variables like annual mean temperature but also on the spe-
cific process, such as growth or respiration.

To incorporate microbial evolutionary processes into ecosystem 
models, it may be helpful to begin with a microbial explicit ecosystem 
model. Several such models have been developed in the past decade, 
including CORPSE (Sulman et al., 2014), MILLENNIAL (Abramoff 
et al., 2018, 2022), and MIMICS (Wieder et al., 2014, 2015). While 
these models typically do not mechanistically represent microbial 
evolution through mutations or HGT due to their small number of 
idealized microbial functional groups, it is possible to implicitly rep-
resent microbial evolution. Fixed trait values, such as CUE, can be 
replaced with a function that considers both present and past abiotic 

F I G U R E  5 Conceptual	framework	of	the	integration	of	microbial	evolution	into	ecosystem	models	across	levels	of	biological	organization	
(left) and spatial scales (right). In red are the data that can be used to calibrate or validate models at different scales. SOC, soil organic 
carbon.
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conditions. This function could be estimated by aggregating outputs 
from the microscale models outlined in Section 4.1 at the kilometer 
scale. While this approach has been applied in vegetation modeling 
(Williams et al., 1997), its application to soil microbial C models has 
yet to be explored.

Validation of the effects of microbial adaptation on soil C cycling 
can be accomplished by comparing model outputs—with and without 
evolution—with observations from soil incubations or ecosystem- 
scale studies. These observations would include measurements of 
soil respiration, litter decay rates, microbial biomass and growth 
rates, and soil C and nitrogen (N) pools (Bonan et al., 2013), and ide-
ally experimental treatments (e.g., C amendments, warming, rainfall 
manipulation). For example, the outcomes of eco- evolutionary pro-
cesses could manifest themselves as different trajectories of litter 
decomposition (e.g., Chakrawal et al., 2024) or different temperature 
sensitivities of microbial growth and respiration (e.g., Allison, 2014) 
compared to those predicted by models neglecting eco- evolutionary 
processes. This approach allows for an examination of whether mi-
crobial evolution influences C dynamics in idealized systems without 
plants (soil incubations) or whole ecosystems including vegetation. 
Microbial explicit soil models are now being coupled with vegetation 
models to describe whole ecosystems. For instance, the integration 
of MIMICS with the Organizing Carbon and Hydrology in Dynamic 
Ecosystems (ORCHIDEE) model has enabled investigations into the 
interactions between microbial biomass and C dynamics (Terrer 
et al., 2021). The same needs to be done with microbial models inte-
grating microbial evolution.

5  |  CONCLUSION

We proposed a definition of evolution suitable for linking microbial 
processes to ecosystem-  and global- scale biogeochemistry. This def-
inition includes ecological processes confounded with evolutionary 
ones, and is useful for integrating microbial evolution into large- scale 
biogeochemical models (Figure 5). In summary, our roadmap for this 
integration includes the following:

• Select a microscale mechanistic model of SOC decomposition.
• Select an evolutionary model depending on the characteristics 

of the microbial community (e.g., adaptive dynamics if variation 
at the population level can be ignored, otherwise QG if varia-
tion at the individual level can be ignored, otherwise a numerical 
individual- based model).

• Validate model predictions with omics data.
• Scale microbial adaptation to the ecosystem level, either by re-

placing parameters in existing ecosystem microbial models by 
functions predicted by the microscale one, or by building a new 
ecosystem microbial model from aggregating the microscale 
one, or by fully coupling the microscale model and a land surface 
model.

• Validate larger- scale model predictions with ecosystem scale 
measurements.

We acknowledge that this is an ambitious roadmap; the pro-
posed	steps	might	 take	10–20 years	 to	be	 implemented.	However,	
through these integrated approaches, researchers will gain insights 
into the magnitude and mechanisms of evolutionary effects on soil 
C cycling, thereby improving predictions of microbial evolutionary 
consequences for biogeochemistry on a changing planet.
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